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Abstract. We establish a direct symmetric (log)-epiperimetric inequality for harmonic
maps with analytic target and we leverage on this result to achieve a new proof of Simon’s
celebrated uniqueness of tangents with isolated singularity for energy minimizing harmonic
maps. Moreover, we show that tangents at infinity of energy minimizing harmonic maps with
suitably controlled energy growth are always unique, by exploiting the lower bound entailed in
the symmetric (log)-epiperimetric inequality.
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1. Introduction

Epiperimetric inequalities in geometric variational problems. Given a geometric
functional F on a domain with boundary—interpreted as the “energy” of the problem—
epiperimetric type inequalities provide a precise quantitative estimate on the energy sub-
optimality of the natural homogeneous extension of a given boundary datum inside the
domain. This information allows to obtain rates of decay, or growth, for the energy density of
F -minimizers, thus providing a suitable framework to study the uniqueness of their tangents
either at a point or at infinity.

Introduced by Reifenberg in his seminal work [Rei64a], epiperimetric inequalities have played
a central role in the study of minimal surfaces. In particular, they were originally developed to
establish the analyticity of solutions to the Plateau problem, in the form posed in [Rei64b].
Later on, White exploited this technique in [Whi83] to prove uniqueness of tangent cones for
two-dimensional area-minimizing integral currents without boundary in Rn. Building on these
ideas, Rivière introduced in [Riv04] the concept of a lower epiperimetric inequality, thereby
establishing a rate of decay for the decreasing density of an area-minimizing integral 2-cycle in
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Rn. One of the key insights arising from Rivière’s work was the identification of the splitting
before tilting phenomenon, a concept that proved essential in his joint regularity results with
Tian for 1 − 1 integral cycles [RT09]. This notion has since been extensively applied in the
regularity theory developed by De Lellis, Spadaro, and Spolaor, who extended these techniques
to area-minimizing and semicalibrated currents (see [DLS16, DLSS17a, Spo19]). More recently,
in the context of two-dimensional almost minimal currents, these authors established a new
epiperimetric inequality [DLSS17b], thereby generalizing White’s earlier results.

Subsequently, epiperimetric inequalities have attracted considerable attention in the setting
of free boundary problems, in particular due to the efforts of Spolaor and Velichkov. For
instance, in [SV19], these two authors adapted direct epiperimetric inequalities for various free
boundary problems in two dimensions. Later, in collaboration with Colombo, the same authors
proved a logarithmic epiperimetric inequality for obstacle-type problems [CSV18, CSV20a].
Another significant advancement came in [ESV20], where Engelstein, Spolaor, and Velichkov
introduced a novel method of proof: by reducing the problem to an estimate for a functional
defined on the sphere and analyzing its gradient flow, they offered a new perspective on proving
such inequalities. While their focus was on the Alt-Caffarelli functional, this approach has since
been instrumental in the analysis of multiplicity-one stationary cones with isolated singularities
[ESV19], leading to new ε-regularity theorems for almost minimizers. Besides, the same
method was exploited by the authors of the present paper to prove uniqueness of tangents for
Yang–Mills connections with isolated singularities [CP24]. For further developments along these
lines, see also [SV21]. Notably, in [ESV24], the authors introduced the notion of symmetric
logarithmic epiperimetric inequality for the Alt-Caffarelli functional and for almost minimizing
currents, which entails at once a bi-later (upper and lower) control on the energy density.

A unifying feature of these works is their reliance on direct constructions of competi-
tors—explicitly built functions that allow one to prove decay estimates around singular points.
Such direct methods stand in contrast to the alternative approach of proving epiperimetric
inequalities via contradiction, a strategy that typically employs linearization techniques.
Contradiction-based proofs have been used effectively in various settings, albeit often limited
to regular points or singularities under strong structural assumptions. Notable examples
include Taylor’s work on area-minimizing flat chains modulo 3 and (M, ε, δ)-minimizers
[Tay73, Tay76a, Tay76b]. For free boundary problems, Weiss’s classical contribution [Wei99]
established epiperimetric inequalities at flat singular points and along the top stratum of
the singular set in the obstacle problem. See also [Tay77] for the very first instance of an
epiperimetric inequality for free boundary problems. For the thin obstacle problem, we refer to
[FS16, GPSVG16], while in the context of harmonic measures, the work of Badger, Engelstein,
and Toro [BET20] inverstigated epiperimetric inequalities for functions that do not minimize
any energy.

Statement of the main results. Inspired by [ESV19, ESV20, ESV24, CP24], the aim of
this article is to prove a symmetric log-epiperimetric inequality for harmonic maps with
real-analytic target. To the best of the authors’ knowledge this is the first instance of such an
inequality in this geometric setting. More precisely, we prove the following–see Section 2 for
the notations appearing in the statement.

Theorem 1.1. Let N ⊂ Rk be a closed real-analytic submanifold in Rk and let n ∈ N be such
that n ≥ 3. Let u0 ∈ C∞(Sn−1, N) be a harmonic map on Sn−1 and let ũ0 ∈W 1,2(Bn, N) be
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its 0-homogeneous extension inside Bn, given by

ũ0 :=

(
·
| · |

)∗
u0.

There exist constant ε, δ > 0, and γ ∈ [0, 1) depending on the dimension and u0 such that the
following holds. If u ∈ C2,α(Sn−1, N) is such that

∥u− u0∥C2,α(Sn−1) < δ

then there exists û ∈W 1,2(Bn, N) such that û|Sn−1 = u and

EBn(û ; ũ0) ≤ EBn(ũ ; ũ0) − ε|EBn(ũ ; ũ0)|1+γ ,(1.1)

where ũ ∈ W 1,2(Bn, N) is the 0-homogeneous extension of u inside Bn. If the kernel of the
second variation is integrable, we can take γ = 0.

Remark 1.2. We give two different proofs of Theorem 1.1. The first one follows the strategies
outlined in [ESV19, ESV20, ESV24, CP24], and occupies the main body of this article. We
will outline it more carefully later in this introduction. On the other hand, the second one can
be found in Appendix B, and uses parabolic variational inequalities to construct the competitor,
and consequently does not require to split the trace into different components and deal with
them separately. Besides, it sheds some light on the relation between the (log)-epiperimetric
and  Lojasiewicz–Simon inequalities by formalising that the latter implies the former under
certain hypothesis. This was highlighted in [CSV20b, Section 3], and we refer the reader to it
for a more detailed discussion. In particular, the present paper complements the extensive
literature on harmonic maps and  Lojasiewicz inequalities. We conclude by mentioning that a
similar issue was emphasized in [CP24, Remark 1.8].

Remark 1.3. Note that in the simple setting of harmonic functions, i.e. when N = R, one can
prove an epiperimetric inequality for both the Dirichlet energy, with respect to 0-homogeneous
extensions as in Theorem 1.1, and the Weiss energy, with respect to α-homogeneous extensions.
More precisely, in the second setting, for f ∈W 1,2

loc (Rn), a point x ∈ Rn, and α ∈ (0,∞), we
define the Weiss energy to be

Wα(r, x; f) :=
1

rn−2+2α

∫
Br(x)

|∇f |2 − α

rn−1+2α

∫
∂Br(x)

f2.

A quick computation reveals that this quantity is monotone for harmonic functions and by
expanding in spherical harmonics one can prove the following: for every n ≥ 2, α > 0, there
exists ε ∈ [0, 1) with the following significance. For u ∈W 1,2(Br(x)) homogeneous of degree α
about x, and f the harmonic extension of u|∂Br(x) to Br(x), i.e. the trace of u to the boundary,
we have

Wα(r, x; f) ≤ (1 − ε)Wα(r, x;u).

See [BET20, Appendix A] for a proof of this result.

We note that Theorem 1.1 is purely variational, and does not depend on any underlying
PDE. As consequence of it, we obtain an alternative, albeit similar, proof of the celebrated
uniqueness of tangent maps with isolated singularities due to Simon [Sim83]. See also [LW08a,
Section 2.5], and [Sim12, Section 3.10] for very elegant proofs of the following theorem.
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Theorem 1.4. Let N ⊂ Rk be a closed real-analytic submanifold in Rk, and Ω ⊂ Rn be an
open set, with n ≥ 3. Consider u ∈W 1,2(Ω, N) an energy minimizing harmonic map. Suppose
that φ is a tangent map at u at some point y ∈ Sing(u), and assume that Sing(φ) = 0. Then,
φ is the unique tangent map for u at y. Furthermore, we have the expansion

u(y + rω) = φ(ω) + ϵ(r, ω),

for ω ∈ Sn−1, and where the error term ϵ satisfies the following asymptotics

lim sup
r→0

| log(r)|α sup
ω∈Sn−1

|ϵ(r, ω)| = 0,

for some α > 0.

Remark 1.5. Theorem 1.4 is sharp in the following senses. First, the logarithmic decay is the
best possible in light of examples constructed in [AS88] and [GW89]. On the other hand, the
analyticity hypothesis on the target N cannot be replaced by smoothness in view of [Whi92].

Being a direct consequence of Theorem 1.1, our proof of Theorem 1.4 is again purely
variational, contrarily to Simon’s one. Indeed, the arguments in [Sim83] are based on a careful
analysis of the convergence properties of solutions to certain parabolic PDEs, and on growth
estimates for the corresponding solutions. This also suggests that the argument used here
would carry over for almost minimizers, although this notion does not seem to have ever
appeared in the literature. Moreover, the lower bound entailed in (1.1) immediately gives the
following uniqueness of tangents at infinity for energy minimizing harmonic maps with analytic
target in any dimension—see Section 6 for a proof.

Theorem 1.6. Let N ⊂ Rk be a closed real-analytic submanifold in Rk. Let u ∈W 1,2
loc (Rn, N)

be an energy minimizing harmonic map such that

1

ρn−2

∫
Bρ(0)

|du|2 dLn ≤ Λ ∀ ρ ∈ (0,+∞).

for some Λ > 0. Assume that u has a tangent map φ at infinity such that Sing(φ) ⊂ {0}.
Then, φ is the unique tangent map of u at infinity and there exists α > 0 such that

∥u(ρ · ) − φ∥L2(Sn−1) ≤ C log(ρ)α ∀ ρ ∈ (1,+∞).

The last few decades have seen remarkable progress on the understanding of the singular set
of harmonic maps, especially when it comes to its optimal bound. In supercritical dimension
n ≥ 3, the sharp bound was established for energy minimizing harmonic maps by Schoen and
Uhlenbeck [SU82], while for stationary harmonic maps, the best available bound on the size of
their singular set is given by the subsequent contributions of [Eva91], [Bet93] and [RS08]. If
we drop the stationarity assumption, it is known by work of Rivière in [Riv95] that harmonic
maps on n-manifolds with n ≥ 3 can be even everywhere discontinuous and, therefore, no
regularity theory is possible in this setting.

On the other hand, understanding under which conditions the tangents to harmonic maps at
their singular points are unique is a widely open problem and, so far, very little is known in full
generality beyond non-isolated singularities. In the framework of stationary harmonic maps,
first Rivière and Tian showed in [RT04] that strongly approximable pseudoholomorphic maps
from a 4-dimensional almost complex manifold into complex algebraic varieties have a unique
tangent map at every point and established the optimal bound on the size of their singular
set. Recently, the uniqueness of tangent maps was generalized by the first-named author
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and Rivière to arbitrary dimension of the domain in [CR23]. Both these results suggest that
uniqueness of tangents is quite a strong property and, therefore, may hold true just under some
special geometric assumptions on the structure both of the map and of the target manifold.

More broadly, this uniqueness problem pertains to other geometric PDEs, and it is a central
question in geometric analysis. For instance, in the celebrated work [Sim83] that we mentioned
above, Simon also proved a result similar to the one in Theorem 1.4 for stationary varifolds. We
refer the reader to the surveys [DL22, Wic14], and the references therein, for further details on
the uniqueness of tangent cones problem in the setting of minimal submanifolds. On the other
hand, in the framework of mean curvature flow, Colding and Minicozzi in [CM15] exploited an
infinite dimensional  Lojasiewicz inequality to prove a uniqueness result at generic cylindrical
singularities. For Einstein manifolds, the same authors proved in [CM14] that the tangent
cone at infinity of a Ricci-flat manifold with Euclidean volume growth is unique, provided one
tangent cone at infinity has a smooth cross-section (compare this result with Theorem 1.6).

Ideas of the proof and structure of the article. The proof of Theorem 1.1 follows the
strategy outlined in [ESV19, ESV20, CP24] and it relies on constructing a competitor function
with energy smaller than the one of the 0-homogeneous extension of u0. We start by rewriting
the energy energy discrepancy EBn(· ; ·) in Theorem 1.1 in a more convenient form. This
is our slicing lemma, cf. Lemma 3.1 and it is done in Section 3. There we also recall the
Lyapunov–Schmidt reduction adapted to the setting of harmonic maps, cf. Lemma 3.2. In
particular, the slicing lemma suggests that we can construct the competitor by flowing inwards
the slices of the trace u0 to decrease the energy. The question then becomes how to choose the
appropriate directions of the flow. To answer it we turn to the second variation, which can
be written as a linear elliptic operator with compact resolvent. This last property is crucial
as it implies that the linearized operator has a finite dimensional kernel, thus allowing us to
decompose the datum u0 as the sum of the projections on the kernel, the positive, and the
negative eigenvalues, i.e. the index. The map u0 being harmonic on the sphere Sn−1, positive
directions will increase the energy to second order, while negative directions will decrease
it. Thus, to construct the competitor, we wish to move move u0 towards zero in the former,
while increasing the contribution of the latter. To deal with the kernel we resort to a finite
dimensional harmonic map heat flow combined with a finite dimensional  Lojasiewicz inequality,
cf. Lemma 4.1 to make the estimate more quantitative. Note that this finite dimensional
contribution is ultimately responsible for the logarithmic decay, instead of a polynomial one.
See Section 4 for a proof of Theorem 1.1. In the special situation in which the projection
of u0 on the kernel of the second variation vanishes, the so-called the integrable case, the
proof simplifies significantly, see Subsection 4.1. The adaptation of this proof to yet another
geometric setting is a testament to its remarkable flexibility. Moreover, it establishes a precise
connection between the kernel of the second variation and the logarithmic decay.

As an application of Theorem 1.1, we prove Theorem 1.4. The reader can find this in Section
5. We start by showing that the L2-difference of a blow-up at comparable scales is small. The
key idea is then to exploit the log-epiperimetric inequality to infer a bound for the energy
density Θ(ρ, y;u) at all dyadic scales, which can then be converted to a bound at all scales.
Uniqueness of the tangent map then follows by a standard Dini-type estimate that we include
in Appendix A. We conclude in Appendix B by giving the alternative proof of Theorem 1.1
already mentioned in Remark 1.2. More precisely, we construct the competitor as in [CSV20b,
Proposition 3.1] by flowing the full trace inwards via infinite dimensional harmonic map heat
flow instead of dealing with the different projected components. As before, the slicing lemma is
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the crucial first of this analysis. This greatly simplifies the proof, while having the drawback of
relying on the infinite dimensional  Lojasiewicz-Simon inequality for harmonic maps established
in [Sim83].

Acknowledgements. The authors would like to thank Luca Spolaor and Daniel Stern
for useful discussions. Part of this work was partially supported by the National Science
Foundation Grant No. DMS-1928930, while the authors were in residence at the Simons Laufer
Mathematical Sciences Institute (formerly MSRI) in Berkeley, California, during the Fall 2024
semester. D.P. acknowledges the support of the AMS-Simons travel grant.

2. Preliminaries on harmonic maps

The aim of this section is to collect basic definitions and properties on harmonic maps used
later in the article.

Definition 2.1 (Dirichlet energy and harmonic maps). Let N ⊂ Rk be a closed, i.e.
compact and boundaryless, smooth submanifold in Rk. Let (Mn, g) be a smooth n-dimensional
Riemannian manifold and let Ω ⊂M be an open subset of M .
An N -valued harmonic map on Ω is a critical point u ∈ W 1,2(Ω, N)1 of the functional
D( · ,Ω) : W 1,2(Ω, N) → [0,+∞) given by

DM (v ; Ω) :=

∫
Ω
|dv|2g d volg ∀ v ∈W 1,2(Ω, N).

For short we denote DM ( · ;M) simply by DM ( · ). We call DM ( · ; Ω) the Dirichlet energy
functional on Ω.

Furthermore, for a given harmonic map u, we define the singular set of u, denoted Sing(u),
to be the complement of the set of points at which u is smooth, i.e. the regular set.

Definition 2.2. Let N ⊂ Rk be a closed smooth submanifold in Rk. Let (Mn, g) be a
smooth n-dimensional Riemannian manifold and let Ω ⊂ M be an open subset of M . Let
u0 ∈W 1,2(Ω, N).
The functional EM ( · ;u0,Ω) : W 1,2(Ω, N) → R given by

EM (u ;u0,Ω) := DM (u ; Ω) − DM (u0 ; Ω) ∀u ∈ W 1,2(Ω, N)

is called Dirichlet energy discrepancy with respect to u0 on Ω.

Lemma 2.3. Let N ⊂ Rk be a closed real-analytic submanifold in Rk and let πN : Wδ0(N) → N
be the nearest-point projection from a tubular neighbourhood Wδ0(N) of N into N . Let (Mn, g)
be a smooth n-dimensional Riemannian manifold and let Ω ⊂M be an open subset of M . Let
u0 ∈ C∞(Ω, N) be a smooth map on Ω. Then, the following facts hold.

(i) The functional FM ( · ;u0,Ω) : Bδ0(0) ⊂ C2,α(Ω, u∗0TN)2→ R given by

FM (v ;u0,Ω) := EM (πN (u0 + v) ;u0,Ω) ∀ v ∈ Bδ0(0) ⊂ C2,α(Ω, u∗0TN)

is real-analytic on Bδ0(0) ⊂ C2,α(Ω, u∗0TN) in the sense of [Sim12, Section 3.13].

1Here and throughout, we denote by W 1,2(Ω, N) the space of the functions u ∈ W 1,2(Ω,Rk) such that
u(x) ∈ N for volg-a.e. x ∈ Ω.

2Here and throughout, for every k = 0, ...,+∞ we denote by by Ck(Ω, u∗
0TN) the space of the Ck sections

on Ω ⊂ M of the smooth vector bundle u∗
0TN over M .
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(ii) For every u ∈ Bδ0(u0) ⊂ C2(Ω, N) there exists ũ ∈ Bδ0(0) ⊂ C2,α(Ω, u∗0TN) so that

EM (u ;u0,Ω) = EM (πN (u0 + ũ) ;u0,Ω) = FM (ũ ;u0,Ω).

Proof. We first prove (i). Fix any v ∈ C2,α(Ω, u∗0TN) and notice that

d(πN (u0 + v)) = dπN (u0 + v)[du0 + dv].

Hence, letting

D := {(x, z, η) : x ∈ Ω, z ∈ Bk
δ0(0), η ∈ TxΩ ⊗ Rk}

we define F : D → R as

F (x, z, η) :=
∣∣dπN (u0(x) + z)[du0(x) + η]

∣∣2
g
− |du0(x)|2g ∀ (x, z, η) ∈ D

and we notice that

FM (v ;u0,Ω) =

∫
Ω
F (x, v(x), dv(x)) d volg(x) ∀ v ∈ Bδ0(0) ⊂ C2,α(Ω, u∗0TN).

Notice that F is smooth in the variable x, because both u0 and πN are smooth functions.
Moreover, since πN is real-analytic, F and all its derivatives with respect to the variable x are
real-analytic with respect to the variables z, η ∈ D. Hence, we conclude that FM ( · ;u0,Ω) is
real-analytic on Bδ0(0) ⊂ C2,α(Ω, u∗0TN) in the sense of [Sim12, Section 3.13] and (i) follows.
Now we turn to show (ii). Fix any y0 ∈ N and define the sets

Uδ0(y0) := {ξ ∈ Ty0N : |ξ| < δ0}
Vδ0(y0) := {πN (y0 + ξ) : ξ ∈ Uδ0(y0)}.

Notice that, since πN is smooth, the map Φy0 : Uδ0(y0) → Vδ0(y0) is a smooth diffeomorphism.
Moreover, again by the smoothness of πN , letting

D := {(y0, y) ∈ N ×N : y ∈ Vδ0(y0)},

the map Ψ : D → Rk given by

Ψ(y0, y) := Φ−1
y0 (y) ∈ Uδ0(y0) ⊂ Ty0N ⊂ Rk

is smooth on D ⊂ N ×N . Assume now that u ∈ Bδ0(u0) ⊂ C2(Ω, N). Then, by definition of
Ψ, we have

u = πN (u0 + Ψ(u0, u))

and thus, setting ũ := Ψ(u0, u) ∈ C2,α(Ω, u∗0TN), we get

u = πN (u0 + ũ).

Then,

DM (u ; Ω) = DM (πN (u0 + ũ) ; Ω)

and (ii) follows immediately. □

Lemma 2.4 (First and second variation of FM ( · ,Ω)). Let N ⊂ Rk be a closed real-analytic
submanifold in Rk and let πN : Wδ0(N) → N be the nearest-point projection from a tubular
neighbourhood Wδ0(N) of N into N . Let (Mn, g) be a smooth n-dimensional Riemannian
manifold and let Ω ⊂M be an open subset of M . Let u0 ∈ C∞(Ω, N) be a smooth harmonic map
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on Ω. Then, the zero section 0 of the vector bundle u∗0TN is a critical point for FM ( · ;u0,Ω),
i.e.

∇FM (0 ;u0,Ω)[φ] = ∇DM (u0 ; Ω)[φ] = 0 ∀φ ∈ C2(u∗0TN).

Moreover, the second variation of FM ( · ;u0,Ω) at the critical point 0 is given by

∇2FM (0 ;u0,Ω)[φ,ψ] = ∇2DM (u0 ; Ω)[φ,ψ]

=

∫
Ω

(⟨dφ, dψ⟩g − ⟨Au0(du0, du0)g, Au0(φ,ψ)⟩g d volM ,

for every φ,ψ ∈ C2(u∗0TN).

Proof. By definition, u0 is a critical point of DM ( · ; Ω), hence

∇DM (u0 ; Ω)[φ] = 0 ∀φ ∈ C2(u∗0TN).

Moreover, by Lemma 2.3 we know that FM ( · ;u0,Ω) is analytic in a neighbourhood of 0 and,
in particular, twice continuously Fréchet differentiable at 0. Hence, the first variation is by
definition given by

∇FM (0 ;u0,Ω)[φ] =
d

dt
FM (tφ ;u0,Ω)

∣∣∣∣
t=0

=
d

dt
DM (πN (u0 + tφ) ; Ω)

∣∣∣∣
t=0

= ∇DM (u0 ; Ω)[φ] = 0

for every φ ∈ C2,α(Ω, u∗0TN). This implies that 0 is a critical point for FM ( · ;u0,Ω).
Concerning the second variation of FM ( · ;u0,Ω) at 0, again we have

∇2FM (0 ;u0,Ω)[φ,ψ] = ∇2DM (u0 ; Ω)[φ,ψ]

=

∫
Ω

(⟨dφ, dψ⟩g − ⟨Au0(du0, du0)g, Au0(φ,ψ)⟩g d volM

for every φ,ψ ∈ C2,α(Ω, u∗0TN), where the last equality follows by the standard second variation
formula for the Dirichlet energy that is standard in literature and can be found for example in
[Smi75]. The statement follows. □

Remark 2.5. Under the same assumptions of Lemma 2.3 we point out that, by simple integration
by parts, if M is a closed smooth manifold we have that

∇2FM (0 ;u0)[φ,ψ] =

∫
M

(⟨dφ, dψ⟩g − ⟨Au0(du0, du0)g, Au0(φ,ψ)⟩g d volM(2.1)

= −
∫
M

(⟨∆gφ,ψ⟩g + ⟨Au0(du0, du0)g, Au0(φ,ψ)⟩g d volM .(2.2)

Notice that the map

u∗0TN × u∗0TN ∋ (X,Y ) 7→ ⟨Au0(du0, du0)g, Au0(X,Y )⟩g
is a symmetric smooth section over M of the vector bundle u∗0T

∗N ⊗ u∗0T
∗N . In particular,

there exists a smooth section over M of the vector bundle u∗0T
∗N ⊗ u∗0TN such that

⟨Au0(du0, du0)g, Au0(X,Y )⟩g = ⟨Su0(du0)gX,Y ⟩g ∀ (X,Y ) ∈ u∗0TN × u∗0TN.
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Thus, by plugging the former definition in (2.1) we have

∇2FM (0 ;u0)[φ,ψ] = −
∫
M

(⟨∆gφ+ Su0(du0)gφ,ψ⟩g d volM ∀φ,ψ ∈ C2(u∗0TN).(2.3)

By introducing the linear elliptic operator LF : C2(u∗0TN) → C0(u∗0TN) given by

LFφ := −(∆gφ+ Su0(du0)gφ) ∀φ ∈ C2(u∗0TN)

we can rewrite (2.3) as

∇2FM (0 ;u0)[φ,ψ] =

∫
M
⟨LFφ,ψ⟩g d volM ∀φ,ψ ∈ C2(u∗0TN).(2.4)

Notice that LF has compact resolvent, because it is an elliptic operator on the compact
manifold M . Moreover, again by standard elliptic theory (i.e. Schauder estimates), for every
α ∈ (0, 1) we have that LF : C2,α(u∗0TN) → C0,α(u∗0TN) has closed range. This facts will
play a crucial role in the following sections.

3. A slicing lemma and Lyapunov–Schmidt reduction

In this section we write the energy discrepancy introduced in Definition 2.2 in a more
convenient form. Besides, we recall the classical Lyapunov-Schmidt reduction and adapt its
statement to our setting.

Lemma 3.1 (Slicing lemma). Let N ⊂ Rk be a closed smooth submanifold in Rk and
let n ∈ N be such that n ≥ 3. Let u0 ∈ W 1,2(Sn−1, N) and denote by ũ0 ∈ W 1,2(Bn, N) the
0-homogeneous extension of u0 inside Bn, i.e.

ũ0 :=

(
·
| · |

)∗
u0.

Then, for every u ∈W 1,2(Bn, N) we have

EBn(u ; ũ0) =

∫ 1

0
ESn−1(u(ρ, · ) ;u0)ρ

n−3 dL1(ρ) +

∫ 1

0

∫
Sn−1

|∂ρu(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ),

where (ρ, θ) are polar coordinates centered at the origin of Rn. Moreover, in case u does not
depend on ρ, the above simplifies to

EBn(u ; ũ0) =
1

n− 2
ESn−1(u(1, ·) ;u0).
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Proof. By definition of the Dirichlet energy discrepancy and passing in polar coordinates (ρ, θ)
centered at the origin, we get

EBn(u ; ũ0) = DBn(u) − DBn(ũ0) =

∫
Bn

|du|2 dLn −
∫
Bn

|dũ0|2 dLn

=

∫ 1

0

∫
Sn−1

(
|∂ρu(ρ, θ)|2 +

1

ρ2
|∂θu(ρ, θ)|2

)
dH n−1(θ)ρn−1 dL1(ρ)

−
∫ 1

0

∫
Sn−1

(
|∂ρũ0(ρ, θ)|2 +

1

ρ2
|∂θũ0(ρ, θ)|2

)
dH n−1(θ)ρn−1 dL1(ρ)

=

∫ 1

0

∫
Sn−1

(
|∂ρu(ρ, θ)|2 +

1

ρ2
|∂θu(ρ, θ)|2

)
dH n−1(θ)ρn−1 dL1(ρ)

−
∫ 1

0

∫
Sn−1

1

ρ2
|∂θu0(θ)|2 dH n−1(θ)ρn−1 dL1(ρ)

=

∫ 1

0

∫
Sn−1

|∂ρu(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ)

+

∫ 1

0

(∫
Sn−1

|∂θu(ρ, · )|2 dH n−1 −
∫
Sn−1

|∂θu0|2 dH n−1

)
ρn−3 dL1(ρ)

=

∫ 1

0

∫
Sn−1

|∂ρu(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ)

+

∫ 1

0
ESn−1(u(ρ, · ) ;u0)ρ

n−3 dL1(ρ).

The statement follows. □

The next lemma is simply a particular case of the standard Lyapunov–Schmidt reduction for
analytic functionals, adapted to our setting. For a proof of completely analogous statements,
see e.g. [ESV19, Lemma B.1] or [ENS22, Lemma 2.2. and Appendix A].

Lemma 3.2 (Lyapunov–Schmidt reduction). Let N ⊂ Rk be a closed real-analytic
submanifold in Rk and let n ≥ 3. Let u0 ∈ C∞(Sn−1, N) be a smooth harmonic map on Sn−1.
Let

K := ker∇2FSn−1(0 ;u0) ⊂ C∞(u∗0TN)

and let K⊥ be its orthogonal complement in L2(u∗0TN)3. Denote by PK and PK⊥ the L2-
orthogonal linear projection operators on the subspaces K and K⊥ respectively. There exist an
open neighbourhood U ⊂ K of 0 in K and an analytic function F : U → K⊥ such that the
following facts hold.

(i) F (0) = 0 and ∇F (0) = 0.
(ii) PK⊥(∇FSn−1(φ+ F (φ))) = 0 for every φ ∈ U .
(iii) PK(∇FSn−1(φ+ F (φ))) = ∇q(φ) for every φ ∈ U , where q : U → R is the analytic map

on U given by

q(φ) := φ+ F (φ) ∀φ ∈ U.

3Here and throughout, by L2(u∗
0TN) we mean the space of the L2 sections of the smooth vector bundle

u∗
0TN .



SYMMETRIC LOG-EPIPERIMETRIC INEQUALITY FOR HARMONIC MAPS 11

(iv) There exists a constant C > 0 such that very φ, η ∈ U , we have

∥∇F (φ)[η]∥C2,α(u∗
0TN) ≤ C∥η∥C0,α(u∗

0TN).

4. The symmetric log-epiperimetric inequality for harmonic maps (Theorem 1.1)

As by the assumptions of Theorem 1.1, let N ⊂ Rk be a closed real-analytic submanifold in
Rk and let n ∈ N be such that n ≥ 3. Let u0 ∈ C∞(Sn−1, N) be a harmonic map on Sn−1. By
Remark 2.5, we know that

K := ker∇2FSn−1(0 ;u0)

is a finite-dimensional linear subspace of C∞(u∗0TN). Let K⊥ ⊂ L2(u∗0TN) be the orthogonal
complement of K inside L2(u∗0TN). Let 0 ∈ U ⊂ K and F : U → K⊥ be the real-analytic
function given by the Lyapunov–Schmidt reduction (Lemma 3.2) of FSn−1( · ;u0) at the critical
point 0. Denote by PK and PK⊥ the L2-orthogonal linear projection operators on the subspaces
K and K⊥ respectively.
Let πN : Wδ0(N) → N be the nearest-point projection from a tubular neighbourhood Wδ0(N)
of N into N . Fix any α ∈ (0, 1), and let δ ∈ (0, δ0) be small enough so that for every
u ∈ C2,α(Sn−1, N) such that

∥u− u0∥C2,α(Sn−1) < δ

we have PKφu ∈ U and φu, F (PKφu) ∈ Bδ0/2(0), where φu ∈ C2,α(u∗0TN) is such that

u = πN (u0 + φu), and where we denoted by Br(f) the ball of radius r in C2,α(u∗0TN). Notice
that δ ∈ (0, δ0) can always be chosen in such a way in view of Lemma 2.3-(ii) and thanks to
the properties of the Lyapunov-Schmidt reduction (Lemma 3.2-(i),(iv)). Then, we write

φu = PKφu + PK⊥φu

= PKφu + F (PKφu) + (PK⊥φu − F (PKφu))

= PKφu + F (PKφu) + φ⊥
u ,

where we have defined

φ⊥
u := PK⊥φu − F (PKφu) ∈ K⊥.

Since the second variation ∇2FBn(0 ;u0) is induced by an elliptic operator LF on a compact
manifold (see Remark 2.5) and since every elliptic operator on a compact manifold has compact
resolvent, by the spectral theory for operators with compact resolvent we know that there exist
a countable orthonormal basis {ϕj}j∈N ⊂ C∞(u∗0TN) of W 1,2(u∗0TN) and countably many

real numbers4 {λj}j∈N such that

LFϕj = λjϕj ∀ j ∈ N.

Moreover, every eigenvalue λj of LF has finite multiplicity. We let

ℓ := dimK < +∞

4This follows from the symmetry of ∇2FBn(0 ;u0), which translates in the self-adjointness of LF .



12 RICCARDO CANIATO AND DAVIDE PARISE

and we assume that the eigenfunctions ϕj are ordered in such a way that {ϕ1, ..., ϕℓ} form an
orthonormal basis of K. Define the index sets

J+ := {j ∈ N : λj > 0}
J− := {j ∈ N : λj < 0}

and we {aj}j∈J−∩J+ ⊂ R and {b1, ..., bℓ} ⊂ R be such that

φ⊥
u =

∑
j∈J−

ajϕj +
∑
j∈J+

ajϕj =: φ⊥
u,− + φ⊥

u,+, and PKφu =
ℓ∑

j=1

bjϕj .

Since φu, F (PKφu) ∈ B δ0
2

(0) and PKφu ∈ U , there exists ξ > 0 with Bℓ
ξ(b) ⊂ Rℓ such that for

every x = (x1, ..., xℓ) ∈ Bℓ
ξ(b) we have

ℓ∑
j=1

xjϕj ∈ U and
ℓ∑

j=1

xjϕj + F

( ℓ∑
j=1

xjϕj

)
∈ B δ0

2

(0).

Let f : Bℓ
ξ(b) ⊂ Rℓ → R be the real-analytic function given by

f(x) := FSn−1

( ℓ∑
j=1

xjϕj + F

( ℓ∑
j=1

xjϕj

)
;u0

)
∀x ∈ Bℓ

ξ(b).(4.1)

Let t0 ∈ (0, 1) and let v : [0, t0] → Bℓ
ξ(b) the smooth vector field on Bℓ

ξ(b) solving on [0, t0] the

following normalized gradient flow equation for f with initial condition b = (b1, ..., bℓ) ∈ Rℓ:

v′(t) =

− ∇f(v(t))

|∇f(v(t))|
if f(v(t)) >

f(b)

2
0 otherwise;

v(0) = b.

Note that this gradient flow is a finite dimensional harmonic map heat flow. Let then
η, η−, η+ : [0, 1] → R be the cut-off functions given by

η(ρ) := εff(b)1−γ√nC(1 − ρ), η−(ρ) := 1 + (1 − ρ)βε and η+(ρ) := 1 − (1 − ρ)αε,

(4.2)

for all ρ ∈ [0, 1], and where ε, εf , C, α, β > 0 and γ ∈ [0, 1) are parameters to be chosen later in
the proof. For now we just assume that

εff(b)1−γ√nC < t0,

so that 0 ≤ η < t0. Then, let µ : [0, 1] → U be given by

µ(ρ) :=
ℓ∑

j=1

vj(η(ρ))ϕj(θ) ∀ ρ ∈ [0, 1] ∀ θ ∈ Sn−1.

Define φû ∈W 1,2(Bn, u∗0TN) by

φû(ρ, · ) := µ(ρ) + F (µ(ρ)) + η−(ρ)φ⊥
u,−(·) + η+(ρ)φ⊥

u,+(·)(4.3)
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for every ρ ∈ (0, 1]. Notice that φû(1, · ) = φu and that φû(ρ, · ) ∈ C2,α(Sn−1, N) for every
ρ ∈ (0, 1]. Moreover, for every ρ ∈ (0, 1] we have

∥φû(ρ, · ) − φu∥C2(Sn−1) = ∥φû(ρ, · ) − φû(1, · )∥C2(Sn−1)

≤ C̃
(
∥η′∥L∞((0,1)) + ∥η′−∥L∞((0,1)) + ∥η′+∥L∞((0,1))

)
<
δ0
4

where C̃ > 0 depends only on the C2-norms of the eigenfunctions ϕ1, ..., ϕℓ and the constants
ε, εf , C, α > 0, γ ∈ [0, 1) are properly chosen in the definition of the cut-off functions η and η+
in such a way that

εff(b)1−γ√nC <
δ0

12C̃
and αε <

δ0

12C̃
.

Thus we have

∥φû(ρ, · )∥C2(Sn−1) ≤ ∥φû(ρ, · ) − φu∥C2(Sn−1) + ∥φu∥C2(Sn−1) <
δ0
2

∀ ρ ∈ (0, 1].(4.4)

Hence, lastly we can define the competitor û ∈W 1,2(Bn, N) by

û(ρ, · ) := πN (u0 + φû(ρ, · ))

for every ρ ∈ (0, 1]. First, notice that

û|Sn−1 = πN (u0 + φû(1, · )) = πN (u0 + φu) = u.

By Lemma 3.1 we have the estimate

EBn(û ; ũ0) − EBn(ũ ; ũ0) ≤
∫ 1

0

(
ESn−1(û(ρ, · ) ;u0) − ESn−1(u ;u0)

)
ρn−3 dL1(ρ)

+

∫ 1

0

∫
Sn−1

|∂ρû(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ) = I + II,

(4.5)

where we have defined

I :=

∫ 1

0

(
ESn−1(û(ρ, · ) ;u0) − ESn−1(u ;u0)

)
ρn−3 dL1(ρ)

II :=

∫ 1

0

∫
Sn−1

|∂ρû(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ).

Let CF > 0 be the constant given by Lemma 3.2-(iv) and notice that, by letting

CN := ∥dπN∥2
L∞(W δ0

2

(N))
< +∞

Cn−1 := H n−1(Sn−1)

Ĉ := CN (1 + C2
F )Cn−1

(
C2 +

α2

n

)
,
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we have

II =

∫ 1

0

∫
Sn−1

|∂ρû(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ)

≤ CN

∫ 1

0

∫
Sn−1

|∂ρφû(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ)

≤ CN

∫ 1

0

∫
Sn−1

(
(η′(ρ))2(1 + ∥∇F (v)[v′]∥2L∞((0,t0))

) dH n−1(θ) dL1(ρ)

+ CN

∫ 1

0

∫
Sn−1

(η′−(ρ))2|φ⊥
u,−(θ)|2

)
ρn−1 dH n−1(θ) dL1(ρ)

+ CN

∫ 1

0

∫
Sn−1

(η′+(ρ))2|φ⊥
u,+(θ)|2

)
ρn−1 dH n−1(θ) dL1(ρ)

≤ CN (1 + C2
F )Cn−1

∫ 1

0
(η′(ρ))2ρn−1 dL1(ρ) + CN∥φ⊥

u,−∥2L2(Sn−1)

∫ 1

0
(η′−(ρ))2ρn−1 dL1(ρ)

+ CN∥φ⊥
u,+∥2L2(Sn−1)

∫ 1

0
(η′+(ρ))2ρn−1 dL1(ρ)

≤ CN (1 + C2
F )Cn−1

(∫ 1

0
ε2ff(b)2−2γC2nρn−1 dL1(ρ) + ∥φ⊥

u,−∥2L2(Sn−1)

∫ 1

0
ε2β2ρn−1 dL1(ρ)

+ ∥φ⊥
u,+∥2L2(Sn−1)

∫ 1

0
ε2α2ρn−1 dL1(ρ)

)
≤ Ĉ

(
ε2ff(b)2−2γ + ε2

(
∥φ⊥

u,−∥2L2(Sn−1) + ∥φ⊥
u,+∥2L2(Sn−1)

))
≤ Ĉ

(
ε2ff(b)2−2γ + ε2∥φ⊥

u ∥2W 1,2(Sn−1)

)
.

(4.6)

Now we turn to estimate I. We notice that, by (4.4), we have

ESn−1(û(ρ, · ) ;u0) − ESn−1(u ;u0) = FSn−1(φû(ρ, · ) ;u0) − FSn−1(φu ;u0)

= III + IV,

with

III := FSn−1(φû(ρ, · ) ;u0) − FSn−1(µ(ρ) + F (µ(ρ)) ;u0)

−
(
FSn−1(φu ;u0) − FSn−1(PKφu + F (PKφu) ;u0)

)
IV := FSn−1(µ(ρ) + F (µ(ρ)) ;u0) − FSn−1(PKφu + F (PKφu) ;u0).

Letting ψρ := φû(ρ, · ) − µ(ρ) − F (µ(ρ)) ∈ K⊥, by Taylor expanding FSn−1( · ;u0) we get that

III = ∇FSn−1(µ(ρ) + F (µ(ρ) ;u0)[ψρ] + ∇2FSn−1(µ(ρ) + F (µ(ρ) + s1ψρ ;u0)[ψρ, ψρ]

−∇FSn−1(PKφu + F (PKφu) ;u0)[φ
⊥
u ]

−∇2FSn−1(PKφu + F (PKφu) + s2φ
⊥
u ;u0)[φ

⊥
u , φ

⊥
u ]

= ∇2FSn−1(µ(ρ) + F (µ(ρ) + s1ψρ ;u0)[ψρ, ψρ]

−∇2FSn−1(PKφu + F (PKφu) + s2φ
⊥
u ;u0)[φ

⊥
u , φ

⊥
u ]
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for some s1, s2 ∈ [0, 1], where in the second equality we have used that ψρ, φ
⊥
u ∈ K⊥ and

Lemma 3.2-(ii). Note that to avoid having factors 1/2 in front of the Hessian term, we will
abuse notation and assume that our definition of Hessian already incorporates this value.
By using the analyticity of FSn−1( · ;u0) around the zero section 0 ∈ C2,α(u∗0TN), and in
particular the fact that its second variation is locally Lipschitz around 0 ∈ C2,α(u∗0TN) (it is
actually smooth around 0 ∈ C2,α(u∗0TN)) we get that there exists L > 0 such that

|∇2FSn−1(ξ ;u0)[ζ, ζ] −∇2FSn−1(0 ;u0)[ζ, ζ]| ≤ L∥ξ∥C2,α(Sn−1)∥ζ∥2W 1,2(Sn−1)

for every ζ ∈ C2,α(u∗0TN) and ξ ∈ C2,α(u∗0TN) sufficiently close to 0 in the C2,α-norm. Thus,
we get

III ≤ ∇2FSn−1(0 ;u0)[ψρ, ψρ] −∇2FSn−1(0 ;u0)[φ
⊥
u , φ

⊥
u ]

+ L∥µ(ρ) + F (µ(ρ)) + s1ψρ∥C2,α(Sn−1)∥ψρ∥2W 1,2(Sn−1)

+ L∥PKφu + F (PKφu) + s2φ
⊥
u ∥C2,α(Sn−1)∥φ⊥

u ∥2W 1,2(Sn−1)

≤ ∇2FSn−1(0 ;u0)[ψρ, ψρ] −∇2FSn−1(0 ;u0)[φ
⊥
u , φ

⊥
u ]

+ L∥µ(ρ) + F (µ(ρ)) + s1ψρ∥C2,α(Sn−1)∥ψρ∥2W 1,2(Sn−1)

+ L
(
∥PKφu∥C2,α(Sn−1) + ∥φ⊥

u ∥C2,α(Sn−1)

)
∥φ⊥

u ∥2W 1,2(Sn−1)

(4.7)

Notice that, by definition (4.3), we have

ψρ = φû(ρ, · ) − µ(ρ) − F (µ(ρ)) = η−(ρ)φ⊥
u,− + η+(ρ)φ⊥

u,+.

Hence

∇2FSn−1(0 ;u0)[ψρ, ψρ] −∇2FSn−1(0 ;u0)[φ
⊥
u , φ

⊥
u ]

= (η−(ρ)2 − 1)∇2FSn−1(0 ;u0)[φ
⊥
u,−, φ

⊥
u,−] + (η+(ρ)2 − 1)∇2FSn−1(0 ;u0)[φ

⊥
u,+, φ

⊥
u,+]

(4.8)

and

∥µ(ρ) + F (µ(ρ)) + s1ψρ∥C2,α(Sn−1)∥ψρ∥2W 1,2(Sn−1)

≤ C
(
∥µ(ρ)∥C2,α(Sn−1) + ∥φ⊥

u ∥C2,α(Sn−1)

)
∥φ⊥

u ∥2W 1,2(Sn−1).
(4.9)

By plugging (4.8) and (4.9) in (4.7) we get

III ≤ (η−(ρ)2 − 1)∇2FSn−1(0 ;u0)[φ
⊥
u,−, φ

⊥
u,−] + (η+(ρ)2 − 1)∇2FSn−1(0 ;u0)[φ

⊥
u,+, φ

⊥
u,+]

+ C
(
∥µ(ρ)∥C2,α(Sn−1) + ∥PKφu∥C2,α(Sn−1) + 2∥φ⊥

u ∥C2,α(Sn−1)

)
∥φ⊥

u ∥2W 1,2(Sn−1).

(4.10)

By definition of η+ and η−, cf. (4.2), up to choosing α, β > 0 big enough and ε > 0 small
enough depending on n ≥ 3 we have∫ 1

0
(η2−(ρ) − 1)ρn−3 dρ ≥ 4

n− 2
ε.

and ∫ 1

0
(η2+(ρ) − 1)ρn−3 dρ ≤ − 4

n− 2
ε.
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Consequently, multiplying (4.10) by ρn−3 and integrating it with respect to ρ, we infer

∫ 1

0
III ρn−3 dL1(ρ)

≤ 4

n− 2
εmax
λj<0

λj∥φ⊥
u,−∥2W 1,2(Sn−1) −

4

n− 2
ε min
λj>0

λj∥φ⊥
u,+∥2W 1,2(Sn−1)

+ C
(
∥µ(ρ)∥C2,α(Sn−1) + ∥PKφu∥C2,α(Sn−1) + ∥φ⊥

u ∥C2,α(Sn−1)

)
∥φ⊥

u ∥2W 1,2(Sn−1)

≤ −
(
Cu0ε− C

(
∥µ(ρ)∥C2,α(Sn−1) + ∥PKφu∥C2,α(Sn−1) + ∥φ⊥

u ∥C2,α(Sn−1)

))
∥φ⊥

u ∥2W 1,2(Sn−1),

(4.11)

where Cu0 > 0 is a constant depending only on n and on the spectral gap of the second
variation of F ( · ; u0) at 0, given by

Cu0 :=
4

n− 2

(
min
λj>0

λj − max
λj<0

λj

)
.

We remark that here we need n ≥ 3 to have integrability of the term C
∫ 1
0 ρ

n−3dρ. Notice now
that

|µ(ρ) − PK(φu)| ≤
∫ η(ρ)

0
|µ′(t)| dt ≤ |η(ρ)| ≤ Cεff(b)γ ,

as well as ∣∣∣∣ ddρµ(ρ)

∣∣∣∣ ≤ εff(b)γ ,

so that choosing εf sufficiently small, and combining these estimates with elliptic regularity, we
have the estimate

∥µ(ρ)∥C2,α(Sn−1) ≤ 2∥PKφu∥C2,α(Sn−1).

Whence, choosing δ > 0 sufficiently small (depending on Cu0) and plugging ∥φu∥C2,α(Sn−1) < δ
in (4.11) , we infer

(4.12)

∫ 1

0
III ρn−3 dρ ≤ −Cu0ε∥φ⊥

u ∥2W 1,2(Sn−1).

We are now left with estimating IV. To this sake, we record  Lojasiewicz’s inequality for analytic
function in Rl, cf. [lL65].

Lemma 4.1. Consider an open set U ⊂ Rl, and an analytic function h : U → R. For every
critical point x ∈ U of h, there exist a neighborhood V of x, an exponent γ ∈ (0, 1/2], and a
constant K ≥ 2 such that

|h(x) − h(y)|1−γ ≤ K|∇h(y)|,
for all y ∈ V .

In particular, we can apply Lemma 4.1 to f defined in (4.1), and infer the existence of a
neighborhood V of the origin, constants K > 0 and γ ∈ (0, 1/2] depending on u0 and n, such
that |f(v)|1−γ ≤ K|∇f(v)|, for every v ∈ V . Then, if f(v(s)) > 0, for 0 < s < t, we have

(4.13) f(v(t))−f(v(0)) = f(v(t))−f(b) =

∫ t

0
∇f(v(τ)) ·v′(τ) dτ = −

∫ t

0
|∇f(v(τ))| dτ ≤ 0.
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This implies that the function t 7→ f(v(t)) is non-increasing, which in turn implies the existence
of τ > 0 such that f(v(t)) ≥ f(b)/2 > 0, for 0 ≤ t ≤ τ , and f(v(t)) ≤ f(b)/2 if t ≥ τ . We now
have two cases. If η(ρ) ≤ τ , we have the following

IV = f(v(η(ρ))) − f(b)

≤ −
∫ η(ρ)

0
|∇f(v(τ))| dτ from (4.13)

≤ −K
∫ η(ρ)

0
|f(v(τ))|1−γ dτ from Lemma 4.1

≤ −Kf(v(η(ρ)))1−γη(ρ) monotonicity of f

≤ − K

21−γ
f(b)1−γη(ρ) definition of τ

≤ −K
2
f(b)1−γη(ρ).

Otherwise, if η(ρ) > τ , we have

IV = f(v(η(ρ))) − f(b) < −1

2
f(b) < −η(ρ)f(b)1−γ ,

where for the last inequality we used the inequality |η| ≤ Cεff(b)1−γ < 1/2 which holds as
long as f(b) is small enough. Thus, we obtain

IV ≤ −η(ρ)f(b)1−γ ,

and this concludes the estimate for IV.
We are now able to finish the proof of Theorem 1.1. First notice that, by the slicing Lemma

3.1, we have

EBn(ũ ; ũ0) =
1

n− 2
ESn−1(u ;u0)

=
1

n− 2

((
FSn−1(φu ;u0) − FSn−1(PKφu + F (PKφu) ;u0)

)
+

1

n− 2
FSn−1(PKφu + F (PKφu) ;u0)

)
=

1

n− 2

(
FSn−1(φ⊥

u ;u0) + f(b)
)
.

We have two cases.

(a) First, assume |f(b)| < (n−2)Cu0
4 ∥φ⊥

u ∥2W 1,2(Sn−1), for some universal constant ν > 0 depending

only on ũ0 and the dimension n. In this case, let εf = 0, so that η ≡ 0, and IV = 0. Then,
since

FSn−1(φ⊥
u ;u0) = FSn−1(φ⊥

u ;u0) − FSn−1(0 ;u0)

= ∇FSn−1(0 ;u0)[φ
⊥
u ] + ∇2FSn−1(0 ;u0)[φ

⊥
u , φ

⊥
u ]

= ∇2FSn−1(ξ ;u0)[φ
⊥
u , φ

⊥
u ],
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for some ξ ∈ Bδ0(0), by choosing δ0 > 0 sufficiently small we have

|FSn−1(φ⊥
u ;u0)| ≤ (min

λj>0
λj + max

λj<0
λj

)
∥φ⊥

u ∥2W 1,2(Sn−1)

≤ (n− 2)Cu0

4
∥φ⊥

u ∥2W 1,2(Sn−1).

Then, we get

|EBn(ũ ; ũ0)| ≤
Cu0

2
∥φ⊥

u ∥2W 1,2(Sn−1) ≤ 1,

where the last inequality follows by possibly choosing δ0 > 0 even smaller depending just
on u0. In particular, from (4.5), (4.6) and (4.12), we deduce

EBn(û ; ũ0) − EBn(ũ ; ũ0) ≤ −Cu0ε∥φ⊥
u ∥2W 1,2(Sn−1) + Ĉε2∥φ⊥

u ∥2W 1,2(Sn−1)

≤ −ε(Cu0 − Ĉε)∥φ⊥
u ∥2W 1,2(Sn−1)

≤ −ε 2(Cu0 − Ĉε)

Cu0

|EBn(ũ ; ũ0)|,

≤ −ε |EBn(ũ ; ũ0)|
≤ −ε |EBn(ũ ; ũ0)|1+γ

for every γ > 0, where the second to last inequality follows by choosing ε appropriately so
that

2(Cu0 − Ĉε)

Cu0

≥ 1 ⇔ ε ≤ 3Cu0

Ĉ

and the last inequality follows because |EBn(ũ ; ũ0)| ≤ 1.
(b) Otherwise, we set ε = εf |f(b)|1−2γ for some εf sufficiently small depending only on n and

u0, allowing us to estimate IV as follows:∫ 1

0
IV ρn−3 dρ ≤ −f(b)1−γ

∫ 1

0
η(ρ)ρn−3 dρ

= −εff(b)2−2γC

∫ 1

0

√
n(1 − ρ)ρn−3 dρ

≤ −εff(b)2−2γ ,

where the last inequality follows by choosing C > 0 big enough depending only on n. Then,
from this inequality, combined with (4.5), (4.6) and (4.12) we infer

EBn(û ; ũ0) − EBn(ũ ; ũ0)

≤ −Cu0ε∥φ⊥
u ∥2W 1,2(Sn−1) − εff(b)2−2γ + Ĉ

(
ε2ff(b)2−2γ + ε2∥φ⊥

u ∥2W 1,2(Sn−1)

)
≤ −(Cu0 − Ĉε)ε∥φ⊥

u ∥2W 1,2(Sn−1) − (εf − Ĉε2f )f(b)2−2γ

≤ −
(

4(Cu0 − Ĉε)

(n− 2)Cu0

− 1 + Ĉεf

)
εff(b)2−2γ

≤ −
(

2(Cu0 − Ĉε)

Cu0

− n− 2

2
+
n− 2

2
Ĉεf

)
εf |EBn(ũ ; ũ0)|2−2γ
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≤ −
(

2(Cu0 − Ĉε)

Cu0

− n− 2

2
+
n− 2

2
Ĉεf

)
εf |EBn(ũ ; ũ0)|1+γ̃ ,

where in the last inequality we have defined γ̃ := 1 − 2γ ∈ [0, 1). Again, by choosing εf
(and hence ε) small enough so that

2(Cu0 − Ĉε)

Cu0

− n− 2

2
+
n− 2

2
Ĉεf ≥ 1,

we get that

EBn(û ; ũ0) − EBn(ũ ; ũ0) ≤ −εf |EBn(ũ ; ũ0)|1+γ̃

and the statement follows.

4.1. The integrable case. We now specialise the proof of Theorem 1.1 to the case of an
integrable kernel (of the second variation). We start by recalling from [AS88] this notion. We
will say that K := ker∇2FSn−1(0 ;u0) is integrable if for every v ∈ K, there exists a family
{us}s∈(0,1) ⊂ C∞(u∗0TN) with us → 0 in C∞(u∗0TN), such that ∇FM (us ;u0) = 0 for every

s ∈ (0, 1), and lims→0 us/s = v in the L2(M) sense. In this setting, analyticity of f defined
above implies the following lemma, whose proof can be found in [AS88, Lemma 1], or [ESV19,
Lemma 2.3].

Lemma 4.2. The integrability condition hold for ker∇2FSn−1(0 ;u0) if and only if f ≡ f(0) = 0
in a neighborhood of 0.

Consequently, it is immediate from this lemma that in the proof of the log-epiperimetric
inequality we can take γ = 0, thus obtaining an epiperimetric inequality.

5. Proof of the uniqueness of tangent maps with isolated singularities
(Theorem 1.4)

As by the statement of Theorem 1.4, consider an energy minimizing harmonic map
u ∈W 1,2(Ω, N) and let y ∈ Sing(u). Let r > 0 be such that Br(y) ⊂ Ω. For every ρ ∈ (0, r/2),
define uy,ρ ∈W 1,2(B2(0), N) as

uy,ρ(x) := u(ρx+ y) for Ln-.a.e. x ∈ B2(0).

First, we show the following lemma that will be used to analyze the rescalings uy,ρ at comparable
scales.

Lemma 5.1. For every ε0 > 0 there exists δ0 > 0 such that for every r ∈ (0, δ0) and every
ρ ∈ [r/2, r] we have ∫

B 3
2
(0)∖B 3

4
(0)

|uy,ρ − uy,r|2 dLn < ε0.

Proof. We argue by contradiction and we claim that there exist ε0 > 0 and sequences {rn}n∈N
and {ρn}n∈N with rn → 0 as n→ +∞ and ρn ∈ [rn/2, rn] such that∫

B 3
2
(0)∖B 3

4
(0)

|uy,ρn − uy,rn |2 dLn ≥ ε0.(5.1)
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Since

1 ≤ rn
ρn

≤ 2

there exists a subsequence (not relabeled) such that

0 < ℓ := lim
n→+∞

rn
ρn

< +∞.

By the standard monotonicity formula for energy minimizing harmonic maps we know that,
up to a subsequence (not relabelled) uy,rn ⇀ φ weakly in W 1,2 and strongly in L2 for some
0-homogeneous tangent map φ ∈W 1,2(B2(0), N). Let Ψℓ : Rn → Rn be given by

Ψℓ(x) := ℓx ∀x ∈ Rn

and notice that

lim
n→+∞

∫
B 3

2
(0)∖B 3

4
(0)

|uy,ρn − φ|2 dLn = lim
n→+∞

∫
B 3

2
(0)∖B 3

4
(0)

|(Ψ−1
ℓ )∗(uy,ℓρn − Ψ∗

ℓφ)|2 dLn

≤ C lim
n→+∞

∫
B 3

2
(0)∖B 3

4
(0)

|uy,rn − φ|2 dLn = 0.

By then, by triangle inequality we get

lim
n→+∞

∫
B 3

2
(0)∖B 3

4
(0)

|uy,ρn − uu,rn |2 dLn

≤ 2 lim
n→+∞

(∫
B 3

2
(0)∖B 3

4
(0)

|uy,ρn − φ|2 dLn +

∫
B 3

2
(0)∖B 3

4
(0)

|uy,rn − φ|2 dLn

)
= 0

which contradicts (5.1). The statement follows. □

Let φ ∈W 1,2(B2(0), N) be any tangent map for u at y such that φ ∈ C∞(B2(0) ∖ {0}, N).
Let {ρi}i∈N be such that uy,ρi ⇀ φ weakly in W 1,2. Fix any η > 0. By Rellich-Kondrachov
theorem, we get that uy,ρi → φ strongly in L2. Thus, there exists i1 ∈ N such that for every
i ≥ i1 we have ∫

B 3
2
(0)∖B 3

4
(0)

|uy,ρi − φ|2 dLn < η.

Let δ0 > 0 be the constant given by Lemma 5.1 with ε0 = η and let i2 ∈ N be such that ρi < δ0
for every i ≥ i2. Let ĩ := max{i1, i2} and let ρ̃ := ρĩ. Fix any n ∈ N. Then, by Lemma 5.1, for
every ρ ∈ [ρ̃/2n+1, ρ̃/2n] we have∫

B 3
2
(0)∖B 3

4
(0)

|uy,ρ − φ|2 dLn ≤ 2

(∫
B 3

2
(0)∖B 3

4
(0)

|uy,ρ − uy, ρ̃
2n
|2 dLn

+

∫
B 3

2
(0)∖B 3

4
(0)

|uy, ρ̃
2n

− φ|2 dLn

)
≤ 4η.

Notice that uy,ρ−φ is an energy minimizing harmonic map and let ε0 > 0 be the constant given
by the ε-regularity theorem for energy minimizing harmonic maps, cf. [SU82]. By choosing
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η > 0 small enough depending just on ε0 and on φ we get that uy,ρ ∈ C∞(B 5
4
(0) ∖B 7

8
(0), N)

and

∥uy,ρ − φ∥C2,α(Sn−1) ≤ ∥uy,ρ − φ∥
C3
(
B 5

4
(0)∖B 7

8
(0)
) < Cη.

Let ε, δ > 0 and γ ∈ [0, 1) be the constants given by Theorem 1.1 for u0 = φ. By again
reducing the size of η > 0 we can make sure that Cη < δ, so that

∥uy,ρ − φ∥C2,α(Sn−1) ≤ Cη < δ.

Thus, by Theorem 1.1, there exists ûρ ∈W 1,2(Bn, N) such that ûρ|Sn−1 = uy,ρ|Sn−1 and

EBn(ûρ ;φ) ≤
(
1 − ε|EBn(ũρ ;φ)|γ

)
EBn(ũρ ;φ),

where ũρ ∈W 1,2(Bn, N) is the 0-homogeneous extension of uy,ρ inside Bn. Notice that, since
uy,ρ is energy minimizing, we have

Θ(ρ, y;u) − Θ(y;u) = DBn(uy,ρ) − Θ(y;u)

= DBn(uy,ρ) − DBn(φ)

≤ DBn(ûρ) − DBn(φ)

= EBn(ûρ ;φ) ≤
(
1 − ε|EBn(ũρ ;φ)|γ

)
EBn(ũρ ;φ) ∀ ρ ∈ (ρ̃/2n+1, ρ̃/2n)

(5.2)

Let

f(ρ) := ρn−2Θ(ρ, y;u) − Θ(y;u)ρn−2 =

∫
Bρ(y)

|du|2 dLn − Θ(y;u)ρn−2 ∀ ρ ∈ [0, 1).

Notice that by the monotonicity formula for energy minimizing harmonic maps we have that
[0, 1) ∋ ρ 7→ f(ρ) is an non-decreasing function of ρ. Hence, f is differentiable L1-a.e. and its
distributional derivative is a measure whose absolutely continous part (with respect to L1)
coincides L1-a.e. with the classical differential and whose singular part is non negative. Thus,
we have

f ′(ρ) ≥
∫
∂Bρ(y)

|du|2 dH n−1 − (n− 2)Θ(y;u)ρn−3

= ρn−1

∫
Sn−1

|du(ρx+ y)|2 dH n−1(x) − (n− 2)Θ(y;u)ρn−3

= ρn−3

(∫
Sn−1

|ρdu(ρx+ y)|2 dH n−1(x) − (n− 2)Θ(y;u)

)

= ρn−3

(∫
Sn−1

|duy,ρ|2 dH n−1(x) − (n− 2)Θ(y;u)

)
= ρn−3(n− 2)

(
DBn(ũρ) − DBn(φ)

)
= ρn−3(n− 2)EBn(ũρ ;φ) for L1-a.e. ρ ∈ (0, 1),

which can be rewritten as

ρn−2EBn(ũρ ;φ) ≤ ρ

n− 2
f ′(ρ) for L1-a.e. ρ ∈ (0, 1).(5.3)
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By plugging (5.3) in (5.2) we get

f(ρ) = ρn−2Θ(ρ, y;u) − Θ(y;u)ρn−2

≤
(
1 − ε|EBn(ũρ ;φ)|γ

)
ρn−2EBn(ũρ ;φ)

≤
(
1 − ε|EBn(ũρ ;φ)|γ

) ρ

n− 2
f ′(ρ), for L1-a.e. ρ ∈ (ρ̃/2n+1, ρ̃/2n).

(5.4)

Moreover, since uy,ρ is energy minimizing, we have

e(ρ) := Θ(ρ, y;u) − Θ(y;u) =
1

ρn−2

∫
Bρ(y)

|du|2 dLn − Θ(y;u) = DBn(uy,ρ) − Θ(y;u)

≤ DBn(ũρ) − Θ(y;u) = DBn(ũρ) − DBn(φ) = EBn(ũρ ;φ).

(5.5)

Hence, by combining (5.4) and (5.5) we get

f(ρ) ≤
(
1 − ε|e(ρ)|γ

) ρ

n− 2
f ′(ρ), for L1-a.e. ρ ∈ (ρ̃/2n+1, ρ̃/2n).

Arguing as in [ESV19, Section 3.2, Step 1] we get

e(ρ) ≤ 2

(
− (n− 2)εγ log

(
ρ

ρ̃

))− 1
γ

∀ ρ ∈ [ρ̃/2n+1, ρ̃/2n].

Since we have chosen n ∈ N arbitrarily and for every ρ ∈ (0, ρ̃) there exists n ∈ N such that
ρ ∈ [ρ̃/2n+1, ρ̃/2n], we have established that

Θ(ρ, y;u) − Θ(y;u) = e(ρ) ≤ 2

(
− (n− 2)εγ log

(
ρ

ρ̃

))− 1
γ

∀ ρ ∈ (0, ρ̃).(5.6)

The uniqueness of tangent map to u at y then follows directly by Proposition A.1 with ρ0 := ρ̃/2
and

ϕ(ρ) := 2

(
− (n− 2)εγ log

(
ρ

ρ̃

))− 1
γ

∀ ρ ∈ (0, ρ̃/2).

6. Proof of the uniqueness of tangent maps at infinity (Theorem 1.6)

In this section, we aim to prove the uniqueness of the blow-down maps, i.e. uniqueness of
the tangent map at infinity. We start by recalling what these objects are.

Definition 6.1 (Tangent maps at infinity). Let N ⊂ Rk be a closed smooth submanifold in

Rk and let n ≥ 3. Let u ∈W 1,2
loc (Rn, N). For every ρ ∈ [1,+∞), define uρ ∈W 1,2(B2(0), N) as

uρ(x) := u0,ρ(x) = u(ρx) for Ln-.a.e. x ∈ B2(0).

If there exist a sequence {ρi}i∈N ⊂ [1,+∞) and a map φ ∈W 1,2(B2(0), N) such that ρi → +∞
and uρi ⇀ φ weakly in W 1,2(B2(0), N), then we say that φ is a blow-down of u, or a tangent
map for u at infinity.

Remark 6.2 (Existence of blow downs). Let u ∈W 1,2
loc (Rn, N) and assume the following growth

condition on the Dirichlet energy of u at infinity: there exists Λ > 0 such that∫
Bρ(0)

|du|2 dLn ≤ Λρn−2 ∀ ρ ∈ (0,+∞).(6.1)
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This implies that the Dirichlet energy of the blow-downs {uρ}ρ∈[1,+∞) of u is uniformly bounded.
Indeed, we have

DBn(uρ) =
1

ρn−2

∫
Bρ(0)

|du|2 dLn ≤ Λ < +∞.

Hence, by standard Sobolev weak compactness, there exist a sequence {ρi}i∈N ⊂ [1,+∞) and a
map φ ∈W 1,2(B2(0), N) such that ρi → +∞ and uρi ⇀ φ weakly in W 1,2(B2(0), N). Hence,
u admits at least a tangent map at infinity.

Now, we aim to provide a proof of Theorem 1.6, i.e. to show that if u is an energy minimizing
harmonic map satisfying (6.1), then u has a unique tangent map at infinity.

Note that, because of the monotonicity formula for energy minimizing harmonic maps, the
function

[1,+∞) ∋ ρ 7→ Θ(ρ ;u) := DBn(uρ) =
1

ρn−2

∫
Bρ(0)

|du|2 dLn

is a non-decreasing function on [1,+∞). By Remark 6.2, the function Θ( · ;u) is also uniformly
bounded on [1,+∞) by the constant Λ. Hence,

lim
ρ→+∞

Θ(ρ ;u)

exists and is a finite non-negative real number, which we denote by Θ(u).
Let φ ∈ W 1,2(B2(0) ;N) be any tangent map to u at infinity and let {ρi}i∈N ⊂ [1,+∞) be
such that ρi → +∞ and uρi ⇀ φ weakly in W 1,2(B2(0), N). Note that, since u is energy
minimizing, subsequentially we have uρ → φ strongly in W 1,2(Bn, N) (see e.g. [Sim12, Section
3.9, Lemma 1]) and thus the we have

DBn(φ) = Θ(u).

Hence, we have

EBn(uρ ;φ) = DBn(uρ) − DBn(φ) = Θ(ρ ;u) − Θ(u)

and by the monotonicity formula we get EBn(uρ ;φ) ≤ 0 for every ρ ∈ [1,+∞). Thus, we got
that

[1,+∞) ∋ ρ 7→ EBn(uρ ;u∞) = Θ(ρ ;u) − Θ(u) ∈ [Θ(1 ;u) − Θ(u), 0] ⊂ (−∞, 0]

is a non-decreasing and non-positive function on [1,+∞). As such, it is differentiable L1-a.e.
with respect to ρ and we have

d

dρ
EBn(uρ ;φ) ≥ −n− 2

ρn−1

∫
Bρ(0)

|du|2 dLn +
1

ρn−2

∫
∂Bρ(0)

|du|2 dH n−1

=
n− 2

ρ

(
EBn(ũρ ;φ) − EBn(uρ ;φ)

)
− n− 2

ρ
DBn(ũρ) +

1

ρn−2

∫
∂Bρ(0)

|du|2 dH n−1

=
n− 2

ρ

(
EBn(ũρ ;φ) − EBn(uρ ;φ)

)
− 1

ρ

∫
Sn−1

|duρ|2 dH n−1 +
1

ρn−2

∫
∂Bρ(0)

|du|2 dH n−1
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=
n− 2

ρ

(
EBn(ũρ ;φ) − EBn(uρ ;φ)

)
− 1

ρn−2

∫
∂Bρ(0)

|du|2 dH n−1 +
1

ρn−2

∫
∂Bρ(0)

|du|2 dH n−1

=
n− 2

ρ

(
EBn(ũρ ;φ) − EBn(uρ ;φ)

)
≥ 0,

where the last inequality follows from the fact that u is energy minimizing. We have then shown
property (1) in [ESV24, Assumptions 2.1]. Note that property (2) in [ESV24, Assumptions
2.1] is exactly the symmetric log-epiperimetric inequality

EBn(û ; ũ0) ≤ EBn(ũ ; ũ0) − ε|EBn(ũ ; ũ0)|1+γ ,

that we have shown in Theorem 1.1. Then we can apply [ESV24, Corollary 2.6] or argue
directly exactly as in Section 5 and Appendix A to obtain that there exists α > 0 such that

∥uρ − φ∥L2(Sn−1) ≤

{
C log(ρ)

γ−1
2γ if γ > 0

Cρ−α if γ = 0
∀ρ ∈ (1,+∞).

This immediately implies that φ is the unique limit of the blow-down family {uρ}ρ∈[1,+∞), i.e.
the unique tangent map of u at infinity.

Appendix A. A criterion for the uniqueness of tangent maps

The aim of this last section is to prove a standard argument in the literature allowing us to
infer uniqueness of tangent maps to a stationary harmonic map u at some point y from a
sufficiently fast decay of the energy density Θ(ρ, y;u) to its limit, usually referred to as Dini
continuity. We reproduce the argument here for the sake of completeness.

Proposition A.1. Let N ⊂ Rk be a closed smooth submanifold in Rk and let Ω ⊂ Rn be any
open set. Let u ∈W 1,2(Ω, N) be a stationary harmonic map on Ω and let y ∈ Ω. Assume that
there exist ρ0 ∈ (0, dist(y, ∂Ω)) and an increasing function ϕ : (0, ρ0) → (0,+∞) such that

Θ(ρ, y;u) − Θ(y;u) ≤ ϕ(ρ) ∀ ρ ∈ (0, ρ0)(A.1)

and ∫ ρ0

0

√
ϕ(ρ)

ρ
dL1(ρ) < +∞.(A.2)

Then, the tangent map to u at y is unique.

Proof. First, recall the monotonicity formula for stationary harmonic maps (whose proof can
be found for instance in [Lin99, Section 1, Equation (1.7)]):

1

ρn−2

∫
Bρ(y)

|du|2 dLn − 1

σn−2

∫
Bσ(y)

|du|2 dLn =

∫
Bρ(y)∖Bσ(y)

1

| · − y|n−2

∣∣∣∣ ∂u∂νy
∣∣∣∣2 dLn(A.3)

for every 0 < σ < ρ < dist(y, ∂Ω), where we have defined

νy :=
· − y

| · − y|
on Ω ∖ {y}.



SYMMETRIC LOG-EPIPERIMETRIC INEQUALITY FOR HARMONIC MAPS 25

By Hölder inequality, (A.3) and the bound (A.1) in the assumptions, for every 0 < σ < ρ < ρ0
we have∫

Bρ(y)∖Bσ(y)

1

| · − y|n−1

∣∣∣∣ ∂u∂νy
∣∣∣∣ dLn

≤
(∫

Bρ(y)∖Bσ(y)

1

| · − y|n−2

∣∣∣∣ ∂u∂νy
∣∣∣∣2 dLn

) 1
2
(∫

Bρ(y)∖Bσ(y)

1

| · − y|n
dLn

) 1
2

≤ C
(
(log ρ− log σ)(Θ(ρ, y;u) − Θ(y;u))

) 1
2

≤ C
(
(log ρ− log σ)ϕ(ρ)

) 1
2 .

Fix any 0 < σ < ρ < ρ0 and let k ∈ N be such that ρ/2k ≤ σ. From the previous estimate, for
every i ∈ N we get ∫

Bρ/2i (y)∖Bρ/2i+1 (y)

1

| · − y|n−1

∣∣∣∣ ∂u∂νy
∣∣∣∣ dLn ≤ C̃

√
ϕ

(
ρ

2i

)
Then we have∫

Bρ(y)∖Bσ(y)

1

| · − y|n−1

∣∣∣∣ ∂u∂νy
∣∣∣∣ dLn ≤

∫
Bρ(y)∖B

ρ/2k
(y)

1

| · − y|n−1

∣∣∣∣ ∂u∂νy
∣∣∣∣ dLn

=

k−1∑
i=0

∫
Bρ/2i (y)∖Bρ/2i+1 (y)

1

| · − y|n−1

∣∣∣∣ ∂u∂νy
∣∣∣∣ dLn

≤
n−1∑
i=0

√
ϕ

(
ρ

2i

)
=

n−1∑
i=0

√
ϕ

(
ρ

2i

)
2i

ρ

ρ

2i

≤
∫ ρ

0

√
ϕ(t)

t
dL1(t).

(A.4)

Now, let φ1, φ2 be any two tangent maps to u at the point y ∈ Ω. By definition of tangent
map, there exist sequences {ρi}i∈N ⊂ (0, ρ0) and {σi}i∈N ⊂ (0, ρ0) such that ρi, σi → 0+ and

uy,ρi ⇀ φ1 and uy,σi ⇀ φ2

weakly in W 1,2(Bn) as i→ +∞. By the weak continuity of the trace operator, we have

uy,ρi |Sn−1 ⇀ φ1|Sn−1 and uy,σi |Sn−1 ⇀ φ2|Sn−1

weakly in L2(Sn−1) as i→ +∞. Thus, by (A.4) and the coarea formula, we have∫
Sn−1

|φ1 − φ2| dH n−1 ≤ lim inf
i→+∞

∫
Sn−1

|uy,ρi − uy,σi | dH n−1

= lim inf
i→+∞

∫
Sn−1

|u(ρix+ y) − u(σix+ y)| dH n−1(x)

= lim inf
i→+∞

∫
Sn−1

∣∣∣∣ ∫ ρi

σi

∇u(ρx+ y) · x dL1(ρ)

∣∣∣∣ dH n−1(x)

= lim inf
i→+∞

∫
Sn−1

∫ ρi

σi

∣∣∣∣∇u(ρx+ y) · x
|x|

∣∣∣∣ dL1(ρ) dH n−1(x)
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= lim inf
i→+∞

∫ ρi

σi

∫
Sn−1

∣∣∣∣∇u(ρx+ y) · x
|x|

∣∣∣∣ dH n−1(x) dL1(ρ)

= lim inf
i→+∞

∫ ρi

σi

∫
∂Bρ(y)

1

ρn−1

∣∣∣∣∇u(z) · z − y

|z − y|

∣∣∣∣ dH n−1(z) dL1(ρ)

= lim inf
i→+∞

∫
Bρi (y)∖Bσi (y)

1

| · − y|n−1

∣∣∣∣ ∂u∂νy
∣∣∣∣ dLn

≤ lim inf
i→+∞

∫ ρi

0

√
ϕ(t)

t
dL1(t) = 0,

where the last equality follows from the assumption (A.2). Hence, we have φ1|Sn−1 = φ2|Sn−1 .
Since both φ1 and φ2 are 0-homogeneous functions, we conclude that φ1 = φ2 and the
statement follows. □

Appendix B. Epiperimetric and  Lojasiewicz–Simon inequalities

One of the strengths of the approach that we use in the proof of the epiperimetric equality
for harmonic maps (see Theorem 1.1) is that we don’t need to use any “infinite dimensional”
 Lojasiewicz inequality. Indeed, by exploiting the Lyapunov–Schmidt reduction for the Dirichlet
energy we can reduce to run a heat flow on the finite dimensional kernel of the second variation
of the energy and then leverage on the standard  Lojasiewicz inequality for real-analytic
functionals on Rk (see Lemma 4.1).

In the framework of harmonic maps though, the following infinite dimensional  Lojasiewicz
inequality was obtained by Simon in [Sim83] (see also [Sim12, Section 3.14] for a proof of this
statement).

Proposition B.1 ( Lojasiewicz–Simon inequality for the Dirichlet energy on the
sphere). Let N ⊂ Rk be a closed real-analytic submanifold in Rk and let n ∈ N be such that
n ≥ 3. Let u0 ∈ C∞(Sn−1, N) be a harmonic map on Sn−1. Then, there exist δ, C > 0 and
β ∈ (0, 12 ] depending on u0 such that

|ESn−1(u ;u0)|1−β ≤ C∥∇ESn−1(u ;u0)∥L2(Sn−1) ∀u ∈ Bδ(u0) ⊂ C2,α(u∗0TN).

Notice that, as suggested by [CSV20b, Proposition 3.1], by exploiting the previous Proposition
(B.1) we can significantly simplify the proof of Theorem 1.1 as follows. As by the assumptions
of Theorem 1.1, let N ⊂ Rk be a closed real-analytic submanifold in Rk and let n ∈ N be such
that n ≥ 3. Let u0 ∈ C∞(Sn−1, N) be a harmonic map on Sn−1 and let C, δ > 0, β ∈ (0, 12 ]
depending on u0 be the constants given by Proposition B.1. Let u ∈ Bδ(u0) and notice that if

EBn(ũ ; ũ0) ≤ 0

then choosing û := ũ trivially gives (1.1). Hence, we can assume that

EBn(ũ ; ũ0) =
1

n− 2
ESn−1(u ;u0) > 0,

where the first equality follows from Lemma 3.1. By the existence of short-time smooth
solutions for the harmonic map heat flow established in [ES64] (see also [LW08b, Theorem
5.2.1]), there exists 0 < ε0 <

1
n−2 such that U : [0, ε0] → C∞(Sn−1, N) is a smooth solution of{

U ′(t) + ∇DSn−1(U(t)) = 0

U(0) = u
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Moreover, by possibly choosing ε0 smaller, we can assume that

ESn−1(u ;u0) ≤ 2ESn−1(U(t) ;u0) ∀ t ∈ [0, ε0](B.1)

with equality just if t = ε0 (notice that t 7→ ESn−1(U(t) ;u0) is continuous and non-increasing

in t). We let Ũ : [0,+∞) → C∞(Sn−1, N) be the given by

Ũ(t) :=

{
U(t) for every 0 ≤ t ≤ ε0

U(ε0) for every t > ε0.

Then we define the competitor û ∈W 1,2(Bn, N) in polar coordinates (ρ, θ) ∈ (0,+∞) × Sn−1

by

û(ρ, θ) := Ũ(−ε0 log(ρ), θ) ∀ (ρ, θ) ∈ (0,+∞) × Sn−1.

By Lemma 3.1, we have

EBn(û ; ũ) =

∫ 1

0
ESn−1(û(ρ, · ) ;u)ρn−3 dL1(ρ) +

∫ 1

0

∫
Sn−1

|∂ρû(ρ, θ)|2 dH n−1(θ)ρn−1 dL1(ρ)

=

∫ 1

0
ESn−1(Ũ(−ε0 log(ρ), · ) ;u)ρn−3 dL1(ρ)

+ ε20

∫ 1

0

∫
Sn−1

|Ũ ′(−ε0 log(ρ), θ)|2 dH n−1(θ)ρn−3 dL1(ρ)

=
1

ε0

∫ +∞

0
ESn−1(Ũ(t, · ) ;u)e

− t(n−2)
ε0 dL1(t)

+ ε0

∫ +∞

0

∫
Sn−1

|Ũ ′(t, θ)|2 dH n−1(θ)e
− t(n−2)

ε0 dL1(t)

=
1

ε0

∫ +∞

0

(
DSn−1(Ũ(t, · )) − DSn−1(Ũ(0, · ))

)
e
− t(n−2)

ε0 dL1(t)

+ ε0

∫ ε0

0

∫
Sn−1

|U ′(t, θ)|2 dH n−1(θ)e
− t(n−2)

ε0 dL1(t)

=
1

ε0

∫ +∞

0

∫ min{t,ε0}

0
∇DSn−1(U(s, · ))[U ′(s, · )] dL1(s)e

− t(n−2)
ε0 dL1(t)(B.2)

+ ε0

∫ ε0

0
∥U ′(t)∥2L2(Sn−1)e

− t(n−2)
ε0 dL1(t)

=
1

ε0

∫ ε0

0
∇DSn−1(U(s, · ))[U ′(s, · )]

(∫ +∞

s
e
− t(n−2)

ε0 dL1(t)

)
dL1(s)

+ ε0

∫ ε0

0
∥U ′(t)∥2L2(Sn−1)e

− t(n−2)
ε0 dL1(t)

= − 1

ε0

∫ ε0

0

(
− ε0
n− 2

∇DSn−1(U(s, · ))[U ′(s, · )] − ε20∥U ′(s)∥2L2(Sn−1)

)
e
− s(n−2)

ε0 dL1(s)

= − 1

ε0

∫ ε0

0

(
ε0

n− 2
− ε20

)
∥U ′(s)∥2L2(Sn−1)

)
e
− s(n−2)

ε0 dL1(s)

= −C̃
∫ ε0

0
∥∇DSn−1(U(s))∥2L2(Sn−1)e

− s(n−2)
ε0 dL1(s),
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where we have let

C̃ :=
1

ε0

(
ε0

n− 2
− ε20

)
> 0.

Now let ε̃ ∈ (0, 1) be a small constant to be chosen later and notice that, by (B.2), by
Proposition B.1 and by (B.1) we have that

EBn(û ; ũ0) − (1 − ε̃)EBn(ũ ; ũ0)

= −C̃
∫ ε0

0
∥∇DSn−1(U(s))∥2L2(Sn−1)e

− s(n−2)
ε0 dL1(s) + ε̃EBn(ũ ; ũ0)

≤ −C̃C2

∫ ε0

0
ESn−1(U(s) ;u0)

2−2βe
− s(n−2)

ε0 dL1(s) + ε̃EBn(ũ ; ũ0)

≤ −22β−2C̃C2

∫ ε0

0
ESn−1(u ;u0)

2−2βe
− s(n−2)

ε0 dL1(s) + ε̃EBn(ũ ; ũ0)

≤ −
(
n− 2

2

)2−2β

C̃C2

∫ ε0

0
EBn(ũ ; ũ0)

2−2βe
− s(n−2)

ε0 dL1(s) + ε̃EBn(ũ ; ũ0)

≤ −
((

n− 2

2

)1−2β

ε0C̃C
2
(
1 − e−(n−2)

)
− ε̃EBn(ũ ; ũ0)

2β−1

)
EBn(ũ ; ũ0)

2−2β.

Now choosing ε̃ := εESn−1(u ; ũ0)
1−2β in the previous inequality for some ε > 0 small enough

depending on u0 and n we get

EBn(û ; ũ0) − (1 − εEBn(ũ ; ũ0)
1−2β)EBn(ũ ; ũ0) ≤ 0

and, since we assumed that EBn(ũ ; ũ0) > 0, the statement follows with γ := 2β.
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problem for harmonic measure with Hölder data, Rev. Mat. Iberoam. 36 (2020), no. 5, 1375–1408.
MR 4161290 (Cited on pages 2 and 3.)

[CM14] Tobias Holck Colding and William P. Minicozzi, II, On uniqueness of tangent cones for Einstein
manifolds, Invent. Math. 196 (2014), no. 3, 515–588. MR 3211041 (Cited on page 5.)

[CM15] , Uniqueness of blowups and  lojasiewicz inequalities, Ann. of Math. (2) 182 (2015), no. 1,
221–285. MR 3374960 (Cited on page 5.)

[CP24] Riccardo Caniato and Davide Parise, Almost minimizing yang−mills fields: log-epiperimetric
inequality, non-concentration, and uniqueness of tangents, 2024. (Cited on pages 2, 3, and 5.)

[CR23] Riccardo Caniato and Tristan Rivière, The unique tangent cone property for weakly holomorphic
maps into projective algebraic varieties, Duke Mathematical Journal 172 (2023), no. 13, 2471–2536.
(Cited on page 5.)

[CSV18] Maria Colombo, Luca Spolaor, and Bozhidar Velichkov, A logarithmic epiperimetric inequality for
the obstacle problem, Geom. Funct. Anal. 28 (2018), no. 4, 1029–1061. MR 3820438 (Cited on
page 2.)

[CSV20a] , Direct epiperimetric inequalities for the thin obstacle problem and applications, Comm.
Pure Appl. Math. 73 (2020), no. 2, 384–420. MR 4054360 (Cited on page 2.)

[CSV20b] , On the asymptotic behavior of the solutions to parabolic variational inequalities, J. Reine
Angew. Math. 768 (2020), 149–182. MR 4168689 (Cited on pages 3, 5, and 26.)



SYMMETRIC LOG-EPIPERIMETRIC INEQUALITY FOR HARMONIC MAPS 29

[DL22] Camillo De Lellis, The regularity theory for the area functional (in geometric measure theory),
International Congress of Mathematicians, 2022. (Cited on page 5.)

[DLS16] Camillo De Lellis and Emanuele Spadaro, Regularity of area minimizing currents II: center manifold,
Ann. of Math. (2) 183 (2016), no. 2, 499–575. MR 3450482 (Cited on page 2.)

[DLSS17a] Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor, Regularity theory for 2-dimensional
almost minimal currents II: Branched center manifold, Ann. PDE 3 (2017), no. 2, Paper No. 18, 85.
MR 3712561 (Cited on page 2.)

[DLSS17b] , Uniqueness of tangent cones for two-dimensional almost-minimizing currents, Comm. Pure
Appl. Math. 70 (2017), no. 7, 1402–1421. MR 3666570 (Cited on page 2.)

[ENS22] Max Engelstein, Robin Neumayer, and Luca Spolaor, Quantitative stability for minimizing Yamabe
metrics, Trans. Amer. Math. Soc. Ser. B 9 (2022), 395–414. MR 4427104 (Cited on page 10.)

[ES64] James Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.
86 (1964), 109–160. MR 164306 (Cited on page 26.)

[ESV19] Max Engelstein, Luca Spolaor, and Bozhidar Velichkov, (Log-)epiperimetric inequality and regularity
over smooth cones for almost area-minimizing currents, Geom. Topol. 23 (2019), no. 1, 513–540.
MR 3921325 (Cited on pages 2, 3, 5, 10, 19, and 22.)

[ESV20] , Uniqueness of the blowup at isolated singularities for the Alt-Caffarelli functional, Duke
Math. J. 169 (2020), no. 8, 1541–1601. MR 4101738 (Cited on pages 2, 3, and 5.)

[ESV24] Nick Edelen, Luca Spolaor, and Bozhidar Velichkov, The symmetric (log-)epiperimetric inequality
and a decay-growth estimate, Calc. Var. Partial Differential Equations 63 (2024), no. 1, Paper No.
2, 29. MR 4668988 (Cited on pages 2, 3, and 24.)

[Eva91] Lawrence C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational
Mech. Anal. 116 (1991), no. 2, 101–113. MR 1143435 (Cited on page 4.)

[FS16] Matteo Focardi and Emanuele Spadaro, An epiperimetric inequality for the thin obstacle problem,
Adv. Differential Equations 21 (2016), no. 1-2, 153–200. MR 3449333 (Cited on page 2.)

[GPSVG16] Nicola Garofalo, Arshak Petrosyan, and Mariana Smit Vega Garcia, An epiperimetric inequality
approach to the regularity of the free boundary in the Signorini problem with variable coefficients, J.
Math. Pures Appl. (9) 105 (2016), no. 6, 745–787. MR 3491531 (Cited on page 2.)

[GW89] Robert Gulliver and Brian White, The rate of convergence of a harmonic map at a singular point,
Math. Ann. 283 (1989), no. 4, 539–549. MR 990588 (Cited on page 4.)

[Lin99] Fang-Hua Lin, Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of
Math. (2) 149 (1999), no. 3, 785–829. MR 1709303 (Cited on page 24.)

[lL65] Stanis law Lojasiewicz, Ensembles semi-analytiques, IHES notes (1965), 220. (Cited on page 16.)
[LW08a] Fanghua Lin and Changyou Wang, The analysis of harmonic maps and their heat flows, World

Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2431658 (Cited on page 3.)
[LW08b] , The analysis of harmonic maps and their heat flows, World Scientific Publishing Co. Pte.

Ltd., Hackensack, NJ, 2008. MR 2431658 (Cited on page 26.)
[Rei64a] E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of

Math. (2) 80 (1964), 1–14. MR 171197 (Cited on page 1.)
[Rei64b] , On the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 15–21. MR 171198

(Cited on page 1.)
[Riv95] Tristan Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995),

no. 2, 197–226. MR 1368247 (Cited on page 4.)
[Riv04] , A lower-epiperimetric inequality for area-minimizing surfaces, Comm. Pure Appl. Math.

57 (2004), no. 12, 1673–1685. MR 2082243 (Cited on page 1.)
[RS08] Tristan Rivière and Michael Struwe, Partial regularity for harmonic maps and related problems,

Comm. Pure Appl. Math. 61 (2008), no. 4, 451–463. MR 2383929 (Cited on page 4.)
[RT04] Tristan Rivière and Gang Tian, The singular set of J-holomorphic maps into projective algebraic

varieties, J. Reine Angew. Math. 570 (2004), 47–87. MR 2075762 (Cited on page 4.)
[RT09] , The singular set of 1-1 integral currents, Ann. of Math. (2) 169 (2009), no. 3, 741–794.

MR 2480617 (Cited on page 2.)
[Sim83] Leon Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric

problems, Ann. of Math. (2) 118 (1983), no. 3, 525–571. MR 727703 (Cited on pages 3, 4, 5, 6,
and 26.)



30 RICCARDO CANIATO AND DAVIDE PARISE

[Sim12] L. Simon, Theorems on regularity and singularity of energy minimizing maps, Lectures in Mathe-
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